Download link
File List
-
1 - 1 - Course Introduction (14_11).mp4 12.26 MB
10 - 1 - What is Relation Extraction_ (9_47).mp4 10.19 MB
10 - 2 - Using Patterns to Extract Relations (6_17).mp4 6.08 MB
10 - 3 - Supervised Relation Extraction (10_51).mp4 10.31 MB
10 - 4 - Semi-Supervised and Unsupervised Relation Extraction (9_53).mp4 10.06 MB
11 - 1 - The Maximum Entropy Model Presentation (12_14).mp4 17.28 MB
11 - 2 - Feature Overlap_Feature Interaction (12_51).mp4 12.63 MB
11 - 3 - Conditional Maxent Models for Classification (4_11).mp4 4.79 MB
11 - 4 - Smoothing_Regularization_Priors for Maxent Models (29_24).mp4 28.8 MB
12 - 1 - An Intro to Parts of Speech and POS Tagging (13_19).mp4 11.88 MB
12 - 2 - Some Methods and Results on Sequence Models for POS Tagging (13_04).mp4 12.82 MB
13 - 1 - Syntactic Structure_ Constituency vs Dependency (8_46).mp4 8.96 MB
13 - 2 - Empirical_Data-Driven Approach to Parsing (7_11).mp4 7.24 MB
13 - 3 - The Exponential Problem in Parsing (14_30).mp4 14.87 MB
14 - 1 - Instructor Chat (9_02).mp4 23.78 MB
15 - 1 - CFGs and PCFGs (15_29).mp4 16.65 MB
15 - 2 - Grammar Transforms (12_05).mp4 12.05 MB
15 - 3 - CKY Parsing (23_25).mp4 26.18 MB
15 - 4 - CKY Example (21_52).mp4 23.44 MB
15 - 5 - Constituency Parser Evaluation (9_45).mp4 10.66 MB
16 - 1 - Lexicalization of PCFGs (7_03).mp4 7.12 MB
16 - 2 - Charniak_'s Model (18_23).mp4 18.96 MB
16 - 3 - PCFG Independence Assumptions (9_44).mp4 9.83 MB
16 - 4 - The Return of Unlexicalized PCFGs (20_53).mp4 21.22 MB
16 - 5 - Latent Variable PCFGs (12_07).mp4 12.55 MB
17 - 1 - Dependency Parsing Introduction (10_25).mp4 11.15 MB
17 - 2 - Greedy Transition-Based Parsing (31_05).mp4 31.36 MB
17 - 3 - Dependencies Encode Relational Structure (7_20).mp4 7.24 MB
18 - 1 - Introduction to Information Retrieval (9_16).mp4 9.06 MB
18 - 2 - Term-Document Incidence Matrices (8_59).mp4 9.02 MB
18 - 3 - The Inverted Index (10_42).mp4 10.71 MB
18 - 4 - Query Processing with the Inverted Index (6_43).mp4 6.74 MB
18 - 5 - Phrase Queries and Positional Indexes (19_45).mp4 20.6 MB
19 - 1 - Introducing Ranked Retrieval (4_27).mp4 4.58 MB
19 - 2 - Scoring with the Jaccard Coefficient (5_06).mp4 5.39 MB
19 - 3 - Term Frequency Weighting (5_59).mp4 6.36 MB
19 - 4 - Inverse Document Frequency Weighting (10_16).mp4 11.12 MB
19 - 5 - TF-IDF Weighting (3_42).mp4 4.1 MB
19 - 6 - The Vector Space Model (16_22).mp4 16.93 MB
19 - 7 - Calculating TF-IDF Cosine Scores (12_47).mp4 13.23 MB
19 - 8 - Evaluating Search Engines (9_02).mp4 8.82 MB
2 - 1 - Regular Expressions (11_25).mp4 10.85 MB
2 - 2 - Regular Expressions in Practical NLP (6_04).mp4 7.96 MB
2 - 3 - Word Tokenization (14_26).mp4 12.47 MB
2 - 4 - Word Normalization and Stemming (11_47).mp4 10.08 MB
2 - 5 - Sentence Segmentation (5_31).mp4 4.97 MB
20 - 1 - Word Senses and Word Relations (11_50).mp4 14.89 MB
20 - 2 - WordNet and Other Online Thesauri (6_23).mp4 8.75 MB
20 - 3 - Word Similarity and Thesaurus Methods (16_17).mp4 20.24 MB
20 - 4 - Word Similarity_ Distributional Similarity I (13_14).mp4 15.03 MB
20 - 5 - Word Similarity_ Distributional Similarity II (8_15).mp4 9.46 MB
21 - 1 - What is Question Answering_ (7_28).mp4 8.89 MB
21 - 2 - Answer Types and Query Formulation (8_47).mp4 10.12 MB
21 - 3 - Passage Retrieval and Answer Extraction (6_38).mp4 7.68 MB
21 - 4 - Using Knowledge in QA (4_25).mp4 5.27 MB
21 - 5 - Advanced_ Answering Complex Questions (4_52).mp4 6.17 MB
22 - 1 - Introduction to Summarization.mp4 6.02 MB
22 - 2 - Generating Snippets.mp4 9.61 MB
22 - 3 - Evaluating Summaries_ ROUGE.mp4 6.53 MB
22 - 4 - Summarizing Multiple Documents.mp4 13.4 MB
23 - 1 - Instructor Chat II (5_23).mp4 18.63 MB
3 - 1 - Defining Minimum Edit Distance (7_04).mp4 6.6 MB
3 - 2 - Computing Minimum Edit Distance (5_54).mp4 5.38 MB
3 - 3 - Backtrace for Computing Alignments (5_55).mp4 5.53 MB
3 - 4 - Weighted Minimum Edit Distance (2_47).mp4 2.83 MB
3 - 5 - Minimum Edit Distance in Computational Biology (9_29).mp4 8.95 MB
4 - 1 - Introduction to N-grams (8_41).mp4 7.64 MB
4 - 2 - Estimating N-gram Probabilities (9_38).mp4 9.48 MB
4 - 3 - Evaluation and Perplexity (11_09).mp4 9.6 MB
4 - 4 - Generalization and Zeros (5_15).mp4 4.67 MB
4 - 5 - Smoothing_ Add-One (6_30).mp4 6.04 MB
4 - 6 - Interpolation (10_25).mp4 9.38 MB
4 - 7 - Good-Turing Smoothing (15_35).mp4 13.44 MB
4 - 8 - Kneser-Ney Smoothing (8_59).mp4 8.44 MB
5 - 1 - The Spelling Correction Task (5_39).mp4 4.84 MB
5 - 2 - The Noisy Channel Model of Spelling (19_30).mp4 17.79 MB
5 - 3 - Real-Word Spelling Correction (9_19).mp4 8.56 MB
5 - 4 - State of the Art Systems (7_10).mp4 6.61 MB
6 - 1 - What is Text Classification_ (8_12).mp4 7.7 MB
6 - 2 - Naive Bayes (3_19).mp4 3.25 MB
6 - 3 - Formalizing the Naive Bayes Classifier (9_28).mp4 8.19 MB
6 - 4 - Naive Bayes_ Learning (5_22).mp4 6.18 MB
6 - 5 - Naive Bayes_ Relationship to Language Modeling (4_35).mp4 4.09 MB
6 - 6 - Multinomial Naive Bayes_ A Worked Example (8_58).mp4 11.38 MB
6 - 7 - Precision, Recall, and the F measure (16_16).mp4 15.72 MB
6 - 8 - Text Classification_ Evaluation (7_17).mp4 11.54 MB
6 - 9 - Practical Issues in Text Classification (5_56).mp4 6.56 MB
7 - 1 - What is Sentiment Analysis_ (7_17).mp4 9.56 MB
7 - 2 - Sentiment Analysis_ A baseline algorithm (13_27).mp4 13.18 MB
7 - 3 - Sentiment Lexicons (8_37).mp4 10.58 MB
7 - 4 - Learning Sentiment Lexicons (14_45).mp4 18.65 MB
7 - 5 - Other Sentiment Tasks (11_01).mp4 14.53 MB
8 - 1 - Generative vs. Discriminative Models (7_49).mp4 7.92 MB
8 - 2 - Making features from text for discriminative NLP models (18_11).mp4 16.66 MB
8 - 3 - Feature-Based Linear Classifiers (13_34).mp4 13.46 MB
8 - 4 - Building a Maxent Model_ The Nuts and Bolts (8_04).mp4 7.8 MB
8 - 5 - Generative vs. Discriminative models_ The problem of overcounting evidence (12_15).mp4 12.22 MB
8 - 6 - Maximizing the Likelihood (10_29).mp4 9.83 MB
9 - 1 - Introduction to Information Extraction (9_18).mp4 9.39 MB
9 - 2 - Evaluation of Named Entity Recognition (6_34).mp4 6.75 MB
9 - 3 - Sequence Models for Named Entity Recognition (15_05).mp4 14.15 MB
9 - 4 - Maximum Entropy Sequence Models (13_01).mp4 13.3 MB
Download Info
-
Tips
“Natural Language Processing” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.
-
DMCA Notice and Takedown Procedure
If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.